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Abstract 
 

Football tracking has become a cornerstone of modern sports 

analytics, offering critical insights for match analysis, tactical 

enhancements, and fan engagement through dynamic 

visualizations. This project addresses the challenge of achieving 

accurate and cost-effective tracking of players, referees, and the 

ball using standard video footage, eliminating the reliance on 

expensive, specialized hardware such as tracking cameras or 

GPS-based systems. 

 

We propose a robust, scalable framework that integrates state-of-

the-art computer vision techniques to achieve this goal. Our 

methodology employs YOLOv8 for efficient and precise 

detection of players and referees, and ByteTrack for reliable 

multi-object tracking to maintain consistent identities across 

frames (Jocher et al., 2023; Zhang et al., 2022). Additionally, we 

incorporate PnLCalib, a points-and-lines calibration method, for 

accurate keypoint detection and homography transformations, 

enabling the mapping of participants onto a two-dimensional 

pitch representation. This integration allows for seamless 

handling of lower-quality video inputs while preserving spatial 

accuracy (Gutiérrez-Pérez & Agudo, 2024). 

 

To validate our approach, we applied the framework to video 

recordings of Duke Kunshan University's Suzhou League 

football matches. The results demonstrated its ability to 

accurately track participants and the ball, even in suboptimal 

video conditions. The system consistently mapped movements 

onto a virtual pitch with high fidelity, offering insights 

comparable to those generated by high-end commercial systems. 

This framework has the potential to transform football analytics 

by addressing the limitations of current systems, particularly in 

accessibility and scalability. By eliminating the need for costly 

infrastructure, our approach democratizes advanced football 

analytics, making it accessible to a broader range of teams, 

leagues, and enthusiasts worldwide. This work not only advances 

the field of sports analytics but also paves the way for further 

innovations in affordable and scalable computer vision 

applications in sports. 

 

Introduction 

 
Football tracking has become an integral aspect of modern 

sports analytics, offering essential insights for match analysis, 

tactical improvements, and enhanced fan engagement through 

dynamic visualizations. Traditional systems, such as those using 

GPS trackers or high-speed cameras, have achieved impressive 

results but remain prohibitively expensive and inaccessible to 

amateur teams and smaller leagues. This disparity has fueled a 

growing interest in developing cost-effective, scalable solutions 

that leverage advancements in computer vision and deep 

learning. 

 

Our project aims to address this challenge by proposing a robust 

framework that uses standard video footage to achieve accurate 

tracking of players, referees, and the ball. By integrating state-

of-the-art techniques such as YOLOv8 for object detection, 

ByteTrack for multi-object tracking, and PnLCalib for field 

mapping, we demonstrate a system capable of maintaining high 

spatial accuracy even in low-quality video conditions. The 

framework eliminates reliance on expensive hardware, 

democratizing football analytics for a broader range of 

stakeholders, from youth academies to amateur clubs. 

 

In this report, we outline our methodology, discuss related work, 

and present the performance of our framework, validated on 

real-world football matches. By addressing the limitations of 

existing systems, our approach offers a scalable, cost-efficient 

alternative poised to advance sports analytics and accessibility. 

 

Related Work 
 

In recent years, the application of computer vision and deep 

learning techniques to football video analysis has rapidly 

advanced, reflecting growing interest from academic researchers, 

commercial providers, and practitioners seeking more accessible 

solutions. Early work in this field typically relied on manual 

annotations or simple feature tracking, which proved costly and 

error-prone in capturing the complex behaviors of athletes and 

the dynamics of ball movement. As camera technology and 

machine learning methods matured, researchers began to develop 

robust frameworks that fused object detection models and 

sophisticated multi-object tracking algorithms to isolate and 

follow players and balls accurately. For example, the emergence 

of large-scale datasets, such as SoccerNet, facilitated the training 

and benchmarking of deep learning methods specifically tailored 

for player and ball detection in challenging, broadcast-quality 

footage, thus enabling holistic event recognition and action 

spotting (Giancola et al., 2018).  
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In parallel, multi-object tracking techniques like DeepSORT and 

ByteTrack leveraged deep appearance features and robust motion 

models to link detection boxes across frames, ensuring smooth 

and continuous identity preservation for multiple players on a 

congested pitch(Wojke et al., 2017; Zhang et al., 2022). 

Researchers then sought more complex scene understanding by 

extending beyond bounding-box tracking to extract body poses, 

relational cues, and tactical patterns, paving the way for richer 

analyses of player movements and team formations. Although 

powerful, these models still relied heavily on calibrated camera 

setups or high-quality broadcast footage, often leaving amateur 

teams and lower-tier leagues at a disadvantage due to the 

prohibitive costs of specialized equipment and lack of 

standardized camera views. 

 

Moreover, commercial tracking systems, such as those offered by 

Hawk-Eye Innovations, have demonstrated near-perfect accuracy 

by deploying multiple high-speed cameras and controlled capture 

environments (Ltd.). While these systems set the gold standard 

for professional-level analysis, they remain costly and complex 

to install, effectively limiting their widespread adoption. The 

academic community responded to this gap by exploring more 

accessible frameworks that integrate advanced deep learning 

pipelines with robust geometric transformations. Approaches like 

panoramic field construction and the generation of tactical 

heatmaps have illustrated how high-level insights—such as 

passing patterns and positional advantages—may be distilled 

from raw video data (Lucey et al., 2013). However, many existing 

solutions still implicitly assume certain minimum levels of video 

quality or stable camera parameters, making them less suitable 

for resource-constrained contexts. 

 

Our framework aims to bridge this gap by combining state-of-

the-art object detection and multi-object tracking methods with 

an adaptive homography inference pipeline that remains effective 

even when confronted with low-quality, single-camera 

recordings. By removing the dependency on specialized, high-

resolution broadcasting equipment and precise calibration 

protocols, our approach ensures that accurate field registration, 

player tracking, and game reconstruction are accessible to a wide 

range of stakeholders. In this way, amateur clubs, youth 

academies, and educational projects can benefit from advanced 

data-driven insights into player performance and tactical 

configurations without incurring the costs and logistical demands 

traditionally associated with professional systems. As interest in 

football analytics continues to expand, and as machine learning 

methods for object detection and camera calibration become 

more robust, such accessible frameworks are poised to reshape 

how teams and analysts at every level derive value from the 

abundant data hidden in everyday match footage. 

 

Proposed Method 

 
Overview 

 

The proposed workflow for football tracking integrates multiple 

state-of-the-art computer vision methods, from data collection 

and model training to player tracking and field mapping. The 

complete pipeline is illustrated in Figure 1, which outlines the 

primary components of our system, including data 

preprocessing, object detection, team classification, 

homography computation, and tracking. Each step is detailed in 

the subsections below.  

 
Figure 1. Project Workflow 

 

Data Collection and Model Training 

 

To thoroughly evaluate the proposed football player detection 

system, we captured custom video footage during the Suzhou 

League games held at Duke Kunshan University. These 

recordings, acquired using a Sony Alpha 7 camera, provided 

authentic test data, enabling a rigorous validation of our 

approach in real-world, non-professional sports settings. The 

sample frame from this footage (Figure 2) exemplifies the 

challenges inherent in dynamic sports environments, such as 

varying lighting conditions, fast player movements, and 

overlapping entities. 

 

 
 

Figure 2. Sample frame from the source video of a Suzhou 

League game. 
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YOLOv8 is one of the most advanced object detection models 

available, achieving exceptional detection performance (Jocher et 

al., 2023). Therefore, for training the model, we leveraged the 

"Football Players Detection" dataset available on Roboflow 

Universe8. This curated dataset included high-quality 

annotations for various entities commonly observed in football 

matches, such as players, referees, and the ball (Figure 3). By 

fine-tuning YOLOv8 with this dataset, we tailored the model to 

excel in detecting objects specific to football gameplay 

(Roboflow, 2024). The dataset's rich annotations and diversity in 

scenarios ensured that the model could generalize effectively. 

 

 
Figure 3. Sample frame from the Roboflow annotated dataset. 

 

The YOLOv8 model was evaluated on our custom test set, and 

the performance metrics are presented in Table 1.  

 

Keypoint detection 
 

To achieve accurate field mapping, we utilized the PnLCalib 

zero-shot detection method, which excels in identifying 

keypoints and calibrating camera views without requiring prior 

training. PnLCalib solves the Perspective-n-Line (PnL) problem 

by leveraging geometric constraints to map 2D image points to 

3D world coordinates. This method allowed us to project field 

lines onto video frames (Figure 4), ensuring precise calibration 

and homography computation. PnLCalib's robust approach 

provided accurate spatial alignment, enabling seamless mapping 

of detected players and the ball to the real-world field layout. Its 

adaptability to varying camera angles and field conditions made 

it a reliable choice for this project. 

 

 
 

Figure 4. Projected Field Lines Using PnLCalib 

 

 

Team Classification 

 

After detecting players using YOLOv8, we extracted their 

bounding boxes and processed them for team classification. 

Initially, we attempted to use simple RGB-based classification 

by following these steps: 

 

1. Field Masking: Masked the green field area by setting 

a range for green values and calculating the average 

green color on the field. 

2. Jersey Color Calculation: Masked the bottom half of 

each player crop (after masking the green background) 

to focus on the jersey area, then calculated the mean 

color of the isolated jersey region. 

Figure 5. Masked field to isolate grass and compute reference 

mean color. 

 

 
 

 
 

 Figure 6. Results of jersey isolation before and after 

background masking. 

 
Figure 7. 3D clustering of jersey colors; centroids indicate team 

averages. 
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Figure 5 shows the masked field used to isolate the grass and 

computer a reference mean color, while Figure 6 illustrates the 

results of jersey isolations before and after background masking. 

However, this approach was not effective due to inconsistencies 

in lighting conditions across video frames, leading to unreliable 

color-based classification. Figure 7 displays a 3D clustering of 

jersey colors. The results highlight that RGB-based clustering 

fails to clearly separate the teams  

 

To overcome this limitation, we employed the SigLip model to 

generate embeddings for each of the crops we got from the 

object detection model bounding boxes (Zhai  et al., 2023). This 

way, we can extract more robust and meaningful features from 

the player images, beyond just the raw pixel values. The model 

helps to capture patterns and characteristics that are less affected 

by lighting variations, leading to more accurate feature 

representations. We then project our embeddings from  N, 768) 

to (N, 3) using UMAP and then perform a two-cluster division 

using k-Means (McInnes  et al., 2018).  

 

This method allows us to group players into distinct teams based 

on the similarity of their extracted features, enabling more 

reliable team classification even in challenging visual 

conditions. 

 

 
 

Figure 8. Team classification using SigLip and k-means  

 

Figure 8 demonstrates how the generated embeddings provide 

better separation of players into teams, offering a more robust 

solution for team classification under varying environmental 

conditions. 

 

Homography Computation and Mapping 

 

Using the key points detected via PnLCalib, we computed the 

homography matrix to map player positions onto a two-

dimensional pitch representation. This transformation enabled 

the creation of a top-down view of player movements, which is 

essential for tactical analysis and visualization. To ensure 

temporal consistency, we applied a moving average with a 

window size of 5 to smooth the homography computation. 

 

In an ideal scenario, where a sufficient number of well-

distributed key points are detected, the homography matrix 

provides accurate estimations of 2D positions. This is 

demonstrated in Figures 9 and10.a, where Figure 9 shows an 

example frame with bounding box centers and detected key 

points, and Figure 10.a illustrates the corresponding 2D 

mapping. However, challenges arise when the homography 

computation fails, leading to incorrect mappings, as shown in 

Figure 10.b. These failures prompted the development of an 

improved framework to enhance the accuracy and reliability of 

the homography matrix calculation. 

 

 
 

Figure 9. Example frame with centers of bounding boxes and 

key points shown 

 

 
 

Figure 10. a: Correct 2D Mapping of players, b: Incorrect 

mapping due to errors in computing H 

 

Several factors were identified as contributors to the 

inaccuracies in homography computation: 

 

1. Insufficient Key Points: The homography matrix 

requires at least four key points for a reliable 

transformation. When fewer points are detected, the 

computation fails. 

2. Misaligned Field Key Points: Detection errors using 

PnLCalib can result in inaccurately positioned field key 

points, significantly degrading the matrix's accuracy. 

3. Frame-to-Frame Discrepancies: Large variations in 

the homography matrix between consecutive frames 

can lead to unstable mappings, especially in dynamic 

scenarios where smooth transitions are critical. 
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To resolve these issues, we adopted a refined routine for 

computing the homography matrix and projections. This method 

ensures stability by incorporating error detection for significant 

deviations and a weighted moving average for temporal 

smoothing. The matrix H is computed from detected keypoints, 

and if keypoints are insufficient, the previous matrix Hprev is 

used to maintain continuity. Player positions are transformed 

into homogeneous coordinates [𝑥 𝑦 1]𝑇 and projected using 

H. Deviations are calculated as: 

 

Δ =  ‖ 𝑝𝑚𝑎𝑝𝑝𝑒𝑑  − 𝑝𝑝𝑟𝑒𝑣_𝑚𝑎𝑝𝑝𝑒𝑑  ‖ 

 

where   𝑝𝑚𝑎𝑝𝑝𝑒𝑑 and  𝑝𝑝𝑟𝑒𝑣_𝑚𝑎𝑝𝑝𝑒𝑑  represent points in the 

current and previous frames, respectively. If  Δ exceeds a 

threshold that we setup, Hprev is retained. Valid matrices are 

stored in a buffer to compute a weighted moving average: 

 

𝐻avg =
∑ 𝑤𝑖

𝑛
𝑖=1 ⋅ 𝐻𝑖

∑ 𝑤𝑖
𝑛
𝑖=1

 

 

with 𝑤𝑖 as normalized weights prioritizing recent matrices. 

 

 

Tracking Players and Ball 

 

The next step in our project involves tracking players across 

consecutive video frames to ensure the consistent assignment of 

unique identifiers (IDs). To achieve this, ByteTrack is used as the 

foundational tracking method (Zhang et al., 2022). Figure 11. 

Shows how smoothly ByteTrack tracks players across different 

frames assuming no occlusion. However, challenges arise in 

scenarios where players become occluded, temporarily leave the 

frame then reappear in later frames, often leading to mismatches 

in ID assignments. To address these challenges, we designed our 

own labeling methodology. This method predefines a fixed set of 

IDs, assigns them to all detected players in the initial frame, and 

systematically manages unassigned or missing IDs in subsequent 

frames. 

 

       
 

Figure 11. Results using ByteTrack for multi-object tracking. 

 

The proposed approach is structured as follows: 

 

1. Distance Calculation: Compute the distances between 

current player positions and two reference sets: the 

positions of players from the previous frame and the last 

known positions of unmatched players. These distances 

form the basis for prioritizing ID assignment. 

2. Sorting: Rank all potential matches based on proximity, 

prioritizing closer matches to minimize ID mismatches 

and improve assignment accuracy. 

3. ID Assignment: Assign IDs to players in the current 

frame by matching their positions to IDs from either the 

previous frame or the last known positions. This ensures 

no duplication of IDs and assigns any remaining IDs to 

unmatched players. 

4. Update Last Known Positions: For players who remain 

unmatched, their last known positions are updated. IDs 

that have been reassigned are removed from this record 

to avoid conflicts in subsequent frames. 

 

This tracking and labeling method delivers more reliable results, 

particularly in challenging conditions such as player occlusions 

or when players temporarily leave the frame. Figures 12 and 13 

illustrate a comparison between our method and the baseline 

labeling approach, specifically showing how our method handles 

situations where a player exits and re-enters the frame. 

 

      
 

Figure 12. Labeling using our method. Left: Player before 

leaving the frame. Right: Player after rejoining. The label is the 

same. 

 

        
 

Figure 13. Labeling using ByteTrack only. Left: Player before 

leaving the frame. Right: Player after rejoining. The label is not 

the same. 
 

However, it is important to note that while tracking based on 2D 

positions generally provides good results, it does not guarantee 

optimal performance in all scenarios. For instance, when multiple 

players disappear from the frame while remaining near each other, 

the tracking algorithm may struggle to distinguish between them. 

This can lead to ID mismatches, as the system may incorrectly 

assign different labels to different players or fail to track a player 

correctly when they reappear. 
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Figure 14. Example frame crops showing labeled players before 

their tracks are lost and interchanged 

Figure 14 highlight a key issue that arises when the position of a 

player in the current frame is very close to the position of 

another player from the previous frame. In such cases, the 

algorithm may incorrectly assign the label of one player to 

another due to the proximity of their positions, leading to ID 

mismatches. This problem is particularly evident when players 

are near each other, causing the tracking system to erroneously 

link the wrong player in the current frame to a player in the 

previous frame. 

 

Results and Performance Evaluation 
 

The objection detection results using YOLOv8 demonstrate 

strong detection capabilities, with an overall mAP@50 of 88.0% 

and mAP@50-95 of 67.3%. Entity-specific metrics indicate 

exceptional precision for goalkeepers, referees, and players, 

with mAP@50 exceeding 94% in all cases. However, ball 

detection remains a challenging task, achieving a relatively 

lower mAP@50 of 59.9% and mAP@50-95 of 32.7%. This 

discrepancy underscores the complexity of detecting smaller and 

faster-moving objects within the scene. 

 

Class mAP@50 (%) mAP@50-95 (%) 

Overall  88.0 67.3 

Ball 59.9 32.7 

Goalkeeper 94.8 79.4 

Player 99.4 86.2 

Referee 97.7 71.0 

 

Table 1. YOLOv8 Model Validation Metrics 

 

The integration of ByteTrack provided reliable multi-object 

tracking, ensuring consistent identity assignments even in 

complex scenarios involving occlusions or players re-entering the 

frame. While challenges such as ID mismatches in crowded areas 

and proximity errors during player reappearances were noted, our 

custom labeling methodology mitigated many of these issues 

effectively. Similarly, the PnLCalib method delivered robust 

homography transformations, accurately mapping player 

positions onto a 2D pitch despite occasional failures caused by 

sparse or misaligned key points.  

 

These shortcomings were addressed with a weighted moving 

average approach, which improved the temporal stability of 

projections. The amalgamation of all the modules allows us to 

achieve satisfactory results. The final output is an annotated video 

that accurately tracks the players, the ball, and the referees. Figure 

15 shows an example frame with all the components applied. 

 

 
 

Figure 15. Example frame from the output with all components 

implemented 

 

Given that the video is at 50 FPS. Using two inferences on each 

frames makes the process computationally intensive. That is, we 

managed to reduce the processing time from 6 hours for a 1-

minute video to approximately 2 hours. This significant 

improvement in efficiency was achieved by leveraging two 

NVIDIA A40 GPUs. One GPU is dedicated to running the 

YOLOv8 model for object detection, while the second GPU takes 

care of the PnLCalib inference for key point detection. The 

parallelization of these tasks across two GPUs has enabled a 

substantial reduction in overall processing time, allowing for 

faster video analysis without compromising the accuracy or 

quality of the results. 

 

Conclusion and future work 
 

In conclusion, this project has made significant progress toward 

developing an AI-driven football tracking system capable of 

delivering reliable player, referee, and ball tracking using 

standard video footage. Through the integration of state-of-the-

art computer vision techniques, including YOLOv8 for precise 

detection, ByteTrack for robust tracking, and PnLCalib for 
keypoint detection and homography transformations, we have 

created a scalable and cost-effective framework. This 

framework has been successfully validated on video footage of 

Duke Kunshan University's Suzhou League football matches, 

demonstrating its ability to track participants and the ball 

accurately even under challenging conditions such as poor 

lighting and low detection quality. 

 

The challenges faced during this project, particularly the effects 

of inconsistent lighting and detection quality, have driven us to 

implement targeted improvements, including fine-tuning the 

YOLOv8 model and enhancing team classification through 

more advanced feature extraction techniques. These efforts have 

led to improvements in player and ball detection, tracking 

consistency, and clustering accuracy. As we move forward, our 

next steps will involve developing a more robust method for 

tracking and labeling, addressing issues such as player 

occlusions and re-identification through the integration of 

methods like Kalman filtering. Additionally, we plan to further 

enhance the classification model by either testing other 

pretrained models to better handle the variability in player 

appearances. Finally, we will explore ways to make the 

framework faster and more efficient.  
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With these updates and further iterative refinements, we are 

confident that our system will continue to evolve into a high-

performing solution for football tracking, offering valuable 

insights for match analysis, tactical development, and fan 

engagement. Ultimately, this work has the potential to 

democratize advanced football analytics, making it accessible to 

a broader range of teams, leagues, and enthusiasts, and paving 

the way for future innovations in affordable and scalable sports 

analytics. 
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